a2 United States Patent

Ananthabhotla

US009128625B1

US 9,128,625 B1
Sep. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(1)

(52)

(58)

METHOD AND SYSTEM FOR PHYSICAL
MEMORY RESERVATION FOR USER-SPACE
PROGRAMS

Inventor: Anand Ananthabhotla, Fremont, CA
(US)

Assignee: EMC CORPORATION, Hopkinton,
MA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 836 days.

Appl. No.: 13/430,152

Filed: Mar. 26,2012

Int. Cl.

GOG6F 3/06 (2006.01)

GOG6F 9/44 (2006.01)

U.S. CL

CPC GOG6F 3/0632 (2013.01); GOGF 3/0644

(2013.01); GOGF 9/4401 (2013.01); GO6F
9/4406 (2013.01)
Field of Classification Search
CPC ... GO6F 3/0632; GOGF 3/0644; GOGF 9/4401;
GOGF 9/4406
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,237,669 A * 8/1993 Spearetal. ... 7112
7,529,923 B2* 52009 Chartrandetal. 713/2
7,549,034 B2* 6/2009 Fosteretal. 711/170
7,694,195 B2* 42010 Khatrietal. 714/723
8,151,076 B2* 4/2012 Kamensky etal. . .. 711/170
8,171,280 B2* 52012 Lauecccovviiiivinnnninne 713/2
8,495,351 B2* 7/2013 Ardittietal.ccoooinne 713/2

* cited by examiner

Primary Examiner — Thuan Du
(74) Attorney, Agent, or Firm — Dergosits & Noah LLP;
Todd A. Noah

(57) ABSTRACT

Contiguous regions of physical memory may be reserved for
user-space programs through a boot time parameter that spe-
cifically identifies the memory region to be reserved. In an
implementation, the boot time parameter includes first and
second values that are used to define a starting and ending
address of the memory region to be reserved. The reserved
memory is accessible by the operating system kernel storage
and networking stacks so that the user-space programs can
use services provided by the kernel storage and networking
stacks.

20 Claims, 7 Drawing Sheets

Physical Memory
(System RAM)

i~ - - - - - - -~ 1 T T 41 5
I User-Space Programs/ : I Kernel :
\ Applications I X \
! 405 ! ! ‘
I ! I 425 !
- A ! | Page Table ./ } oS
: rogram : : For Program A |

|
| . b .. - !
i | 1)
I o o e N
I 1 o o o . !
I PO, i | |

t
: L— _2_ —d ! : :
| - 420 . | [
1 | | 1
1 |) 1
40
| Program B | , “Page Table I
: | ! For Program B X
1 ! t ! L
!) | . s e o | Applications
! | ! 3 7 I 430
| ' | |
| ¢ @ s o

: | | H 6
[i | | :
! 435 _ 3 7 ! i 7
! | i 1
! : ! | 445
| ! | |
1 ! [|

U.S. Patent Sep. 8, 2015 Sheet 1 of 7 US 9,128,625 B1

Client

System
113

Server 128
System
122

Client
System
116

Communication Network
124

Client
System
119

Figure 1

o 201

|~ 203

s ‘ 217

| —————

207 =
] 213

N
—
Y

/_] o A
- W};’W“WEJF \ uy
B’

|

Figure 2

U.S. Patent

Sep. 8, 2015 Sheet 2 of 7 US 9,128,625 B1
~— 201
11O System Central x 201
Speaker
Controller Memory Processor 320
306 304 302
A 4 A 392
¥ \ \
o A A A A
4
Display
Adapter
308
A
A4 \ Y \ ¥
. Serial Mass Network
Mgggor Port Keé%%ard Storage Interface
312 217 318

Figure 3

US 9,128,625 Bl

Sheet 3 of 7

Sep. 8, 2015

U.S. Patent

¥ @inbi4

/S Svv
) — GEY
|
9 //I ! “ _
| |
oY | | .
suoned||ddy M R B | |
" g weibolid 104 " _ 5
s|qe] abed ! I g weisboid
| ~opy | |
H | !
" _ “ 0V - - ——— 4
| | i
“ e o @ e o o “ _
|
| 9 Z ! i
_ e o o e o ¢ _ |
| |
! v weiboid o4 | ! v weiboid
begq |
SO | _/ elgere _
| gy | | SOy
| oL H i suoneol ddy
! jouIaY] | ___/sweiboig soedg-iesn |
Sy

(NVY woishg)
Alowapy jeaisAyd

U.S. Patent Sep. 8, 2015 Sheet 4 of 7
505~ " “Reserved Memory
1\
Start = Al Start = A2 Start = A3 Start = Ad
Size =51 Size =S2 Size =53 Size =54
530
525A _ 5258 _ 525D
® o
540 515 —
Active Memory
Region List
v
Start = Al Start = A3 Start = A4
Size =51 Size =53 Size =54 @
550
Start = Al Start = A3
Size =51 Size =S3

US 9,128,625 B1

520

Figure 5

_/Available Memory Map

U.S. Patent Sep. 8, 2015 Sheet 5 of 7 US 9,128,625 B1

605 —y Parse a boot parameter specifying a memory region to be reserved for

user-space programs
610

A

Mark an entry in an E820 map of a kernel to indicate that a memory
region corresponding to the specified memory region and identified by
the entry is reserved
615

¥

Track the specified memory region to be reserved in a reserved
memory region tracking list
620

v

Add the entry to an active memory region list of the kernel
625

v

Permit the kernel to initialize memory
630

¥

Add the entry to an available memory map of the kernel
635

Y

Scan the reserved memory region tracking list to find the specified
memory region to be reserved
640

Y

Based on the scan, update the available memory map of the kernel to
indicate that a region of memory identified by the added entry is used,
thereby reserving the region of memory for the user-space programs, the
region of memory being the memory region specified by the boot
parameter
645

Figure 6

U.S. Patent Sep. 8, 2015 Sheet 6 of 7 US 9,128,625 B1

710{ Kernel bootup J

Parse the next kernel command line argument

715

of the form memmap="<start>@<size>, where

A 4

start is the starting physical address of memory
to be reserved and size is the amount

720 =\ v
Mark the region as reserved in the e820 map
and also add it to a separate reserved memory

region list

~— 735

Yes Are there more

kernel command
line arguments?

730 l No

Take unreserved entries from the system €820 map as well as all entries
from the reserved memory region list and add them to the active memory
region list

740 L

Setup page tables and descriptors for all
memory described by the entries in the active

memory region list

Figure 7

U.S. Patent Sep. 8, 2015 Sheet 7 of 7 US 9,128,625 B1

805 —
Add each entry in the active memory region list

to the kernel memory allocator

A 4

810 —
Pick the next entry in the reserved memory

\ 4

region list

}

815 — Mark the memory region as reserved in the

available memory map used by the kernel
memory allocator

re there more
Yes

entries in the

reserved memory

820 . .
gion list?

830 Continue with kernel
bootup

Figure 8

US 9,128,625 Bl

1
METHOD AND SYSTEM FOR PHYSICAL
MEMORY RESERVATION FOR USER-SPACE
PROGRAMS

BACKGROUND

The present invention relates to the field of information
technology, including, more particularly, to systems and tech-
niques for memory management.

Computers are tasked with some of the world’s most dif-
ficult problems such as weather forecasting, gene sequencing,
simulations, and many others. Yet, computers have also had a
tremendous impact on consumers through such devices as the
personal computer, smartphone, tablet computer, and so
forth. Computers have allowed us to solve complex equa-
tions, surf the web, and search libraries of everything from
banking records and encyclopedias to our favorite recipes.

Time matters. There is an ever-increasing demand for sys-
tems and techniques that enable faster and more efficient
transactions. Memory management is a process for managing
computer memory and allocating portions of memory to pro-
grams. Virtual memory refers to decoupling the memory
organization from the actual physical hardware. Generally,
applications use memory via virtual addresses. Each time an
attempt to access the actual data is made the virtual memory
subsystem translates the virtual address to a physical address,
which corresponds to the address of the data as seen by the
hardware. The address translation process itself is managed
by the operating system.

Current memory management techniques, however, are
unable to guarantee contiguous portions of physical memory
be available to programs while also ensuring that such
memory is accessible by the OS kernel storage and network-
ing stacks so that the programs can use the kernel storage and
networking services.

Thus, there is a need to provide systems and techniques to
reserve memory while still retaining the ability to allow read/
write access by the kernel storage and networking stacks.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a block diagram of a client-server system and
network in which an embodiment of the invention may be
implemented.

FIG. 2 shows a more detailed diagram of an exemplary
client or computer which may be used in an implementation
of the invention.

FIG. 3 shows a system block diagram of a client computer
system.

FIG. 4 shows a schematic diagram of user-space programs
accessing reserved contiguous blocks of physical memory as
provided by an implementation of the invention.

FIG. 5 shows a schematic diagram of data structures that
may be used for reserving contiguous regions of physical
memory for user-space programs.

FIG. 6 shows an overall flow of a specific implementation
for reserving contiguous regions of physical memory for
user-space programs.

FIG. 7 shows another example of a flow of a specific
implementation for physical memory reservations.

FIG. 8 shows a continuation of the flow shown in FIG. 7.

DETAILED DESCRIPTION

FIG. 1 is a simplified block diagram of a distributed com-
puter network 100. Computer network 100 includes a number
of client systems 113, 116, and 119, and a server system 122

10

15

20

25

30

35

40

45

50

55

60

65

2

coupled to a communication network 124 via a plurality of
communication links 128. There may be any number of cli-
ents and servers in a system. Communication network 124
provides a mechanism for allowing the various components
of distributed network 100 to communicate and exchange
information with each other.

Communication network 124 may itself be comprised of
many interconnected computer systems and communication
links. Communication links 128 may be hardwire links, opti-
cal links, satellite or other wireless communications links,
wave propagation links, or any other mechanisms for com-
munication of information. Various communication protocols
may be used to facilitate communication between the various
systems shown in FIG. 1. These communication protocols
may include TCP/IP, HTTP protocols, wireless application
protocol (WAP), vendor-specific protocols, customized pro-
tocols, and others. While in one embodiment, communication
network 124 is the Internet, in other embodiments, commu-
nication network 124 may be any suitable communication
network including a local area network (LAN), a wide area
network (WAN), a wireless network, a intranet, a private
network, a public network, a switched network, and combi-
nations of these, and the like.

Distributed computer network 100 in FIG. 1 is merely
illustrative of an embodiment and is not intended to limit the
scope of the invention as recited in the claims. One of ordinary
skill in the art would recognize other variations, modifica-
tions, and alternatives. For example, more than one server
system 122 may be connected to communication network
124. As another example, a number of client systems 113,
116, and 119 may be coupled to communication network 124
via an access provider (not shown) or via some other server
system.

Client systems 113, 116, and 119 typically request infor-
mation from a server system which provides the information.
For this reason, server systems typically have more comput-
ing and storage capacity than client systems. However, a
particular computer system may act as both a client or a server
depending on whether the computer system is requesting or
providing information. Additionally, although aspects of the
invention have been described using a client-server environ-
ment, it should be apparent that the invention may also be
embodied in a stand-alone computer system. Aspects of the
invention may be embodied using a client-server environment
or a cloud-computing environment.

Server 122 is responsible for receiving information
requests from client systems 113, 116, and 119, performing
processing required to satisfy the requests, and for forwarding
the results corresponding to the requests back to the request-
ing client system. The processing required to satisfy the
request may be performed by server system 122 or may
alternatively be delegated to other servers connected to com-
munication network 124.

Client systems 113,116, and 119 enable users to access and
query information stored by server system 122. In a specific
embodiment, a “Web browser” application executing on a
client system enables users to select, access, retrieve, or query
information stored by server system 122. Examples of web
browsers include the Internet Explorer browser program pro-
vided by Microsoft Corporation, and the Firefox browser
provided by Mozilla Foundation, and others.

FIG. 2 shows an exemplary client or server system. In an
embodiment, a user interfaces with the system through a
computer workstation system, such as shown in FIG. 2. FIG.
2 shows a computer system 201 that includes a monitor 203,
screen 205, cabinet 207, keyboard 209, and mouse 211.
Mouse 211 may have one or more buttons such as mouse

US 9,128,625 Bl

3

buttons 213. Cabinet 207 houses familiar computer compo-
nents, some of which are not shown, such as a processor,
memory, mass storage devices 217, and the like.

Mass storage devices 217 may include mass disk drives,
floppy disks, magnetic disks, optical disks, magneto-optical
disks, fixed disks, hard disks, CD-ROMSs, recordable CDs,
DVDs, recordable DVDs (e.g., DVD-R, DVD+R, DVD-RW,
DVD+RW, HD-DVD, or Blu-ray Disc), flash and other non-
volatile solid-state storage (e.g., USB flash drive), battery-
backed-up volatile memory, tape storage, reader, and other
similar media, and combinations of these.

A computer-implemented or computer-executable version
of the invention may be embodied using, stored on, or asso-
ciated with computer-readable medium or non-transitory
computer-readable medium. A computer-readable medium
may include any medium that participates in providing
instructions to one or more processors for execution. Such a
medium may take many forms including, but not limited to,
nonvolatile, volatile, and transmission media. Nonvolatile
media includes, for example, flash memory, or optical or
magnetic disks. Volatile media includes static or dynamic
memory, such as cache memory or RAM. Transmission
media includes coaxial cables, copper wire, fiber optic lines,
and wires arranged in a bus. Transmission media can also take
the form of electromagnetic, radio frequency, acoustic, or
light waves, such as those generated during radio wave and
infrared data communications.

For example, a binary, machine-executable version, of the
software of the present invention may be stored or reside in
RAM or cache memory, or on mass storage device 217. The
source code of the software may also be stored or reside on
mass storage device 217 (e.g., hard disk, magnetic disk, tape,
or CD-ROM). As a further example, code may be transmitted
via wires, radio waves, or through a network such as the
Internet.

FIG. 3 shows a system block diagram of computer system
201. As in FIG. 2, computer system 201 includes monitor 203,
keyboard 209, and mass storage devices 217. Computer sys-
tem 201 further includes subsystems such as central proces-
sor 302, system memory 304, input/output (I/O) controller
306, display adapter 308, serial or universal serial bus (USB)
port 312, network interface 318, and speaker 320. In an
embodiment, a computer system includes additional or fewer
subsystems. For example, a computer system could include
more than one processor 302 (i.e., a multiprocessor system)
or a system may include a cache memory.

Arrows such as 322 represent the system bus architecture
of computer system 201. However, these arrows are illustra-
tive of any interconnection scheme serving to link the sub-
systems. For example, speaker 320 could be connected to the
other subsystems through a port or have an internal direct
connection to central processor 302. The processor may
include multiple processors or a multicore processor, which
may permit parallel processing of information. Computer
system 201 shown in FIG. 2 is but an example of a suitable
computer system. Other configurations of subsystems suit-
able for use will be readily apparent to one of ordinary skill in
the art.

Computer software products may be written in any of
various suitable programming languages, such as C, C++, C#,
Pascal, Fortran, Perl, Matlab (from MathWorks), SAS, SPSS,
JavaScript, AJAX, Java, SQL, and XQuery (a query language
that is designed to process data from XML files or any data
source that can be viewed as XML, HTML, or both). The
computer software product may be an independent applica-
tion with data input and data display modules. Alternatively,
the computer software products may be classes that may be

10

15

20

25

30

35

40

45

50

55

60

65

4

instantiated as distributed objects. The computer software
products may also be component software such as Java Beans
(from Oracle Corporation) or Enterprise Java Beans (EJB
from Oracle Corporation). In a specific embodiment, the
present invention provides a computer program product
which stores instructions such as computer code to program a
computer to perform any of the processes or techniques
described.

An operating system for the system may be one of the
Microsoft Windows® family of operating systems (e.g., Win-
dows 95, 98, Me, Windows NT, Windows 2000, Windows XP,
Windows XP x64 Edition, Windows Vista, Windows 7, Win-
dows CE, Windows Mobile), Linux, HP-UX, UNIX, Sun OS,
Solaris, Mac OS X, Alpha OS, AIX, IRIX32, or IRIX64.
Other operating systems may be used. Microsoft Windows is
a trademark of Microsoft Corporation.

Furthermore, the computer may be connected to a network
and may interface to other computers using this network. The
network may be an intranet, internet, or the Internet, among
others. The network may be a wired network (e.g., using
copper), telephone network, packet network, an optical net-
work (e.g., using optical fiber), or a wireless network, or any
combination of these. For example, data and other informa-
tion may be passed between the computer and components
(or steps) of the system using a wireless network using a
protocol such as Wi-Fi (IEEE standards 802.11, 802.11a,
802.11b, 802.11e, 802.11g, 802.11i, and 802.11n, just to
name a few examples). For example, signals from a computer
may be transferred, at least in part, wirelessly to components
or other computers.

In an embodiment, with a Web browser executing on a
computer workstation system, a user accesses a system on the
World Wide Web (WWW) through a network such as the
Internet. The Web browser is used to download web pages or
other content in various formats including HTML, XML,
text, PDF, and postscript, and may be used to upload infor-
mation to other parts of the system. The Web browser may use
uniform resource identifiers (URLs) to identify resources on
the Web and hypertext transfer protocol (HTTP) in transfer-
ring files on the Web.

FIG. 4 shows a schematic diagram of user-space programs
accessing reserved contiguous blocks of physical memory as
provided by an implementation of the invention. As shown in
the example of FIG. 4, there are user-space programs or
applications 405 such as user-space programs A and B, a
kernel 410, and physical or real system memory, i.e., system
RAM 415. Some portions of the memory may be used by the
kernel or operating system. Other portions of the memory
may be used by the programs or applications.

A technique of the invention allows for identifying specific
regions or chunks of contiguous physical memory (e.g., by
physical memory address) to be reserved for user-space pro-
grams. That is, the reserved physical memory includes physi-
cal or real memory addresses that are consecutive, successive,
uninterrupted, or continuous. There can be a reserved range of
physical addresses corresponding to a memory size where
each address follows another address in the range without
interruption from a beginning address to an ending address of
the range. Each address in the reserved range references a
chunk of physical memory to be used by a user-space pro-
gram.

Reserving contiguous chunks of memory for user-space
programs can offer several benefits including allowing for
more efficient processing because the reserved memory can
be used as a cache in a storage system. The reserved memory
may be used to perform disk input/output (IO) using the
kernel’s 1O facilities. For example, an application making an

US 9,128,625 Bl

5

10 request can do so using the kernel software layers and
device drivers rather than having to directly access the disk
device for 10. Thus, the requesting application can take
advantage of the services offered by the kernel software lay-
ers and device drivers. Further, in the event of a system crash,
having contiguous chunks of memory facilitates the dumping
of the memory contents to disk. Having large contiguous
chunks of memory makes it easy to communicate to a crash-
protection firmware program what portion of the memory
should be dumped to disk.

In an operating system, such as Linux, user space programs
may run in a virtual memory environment as indicated by the
broken line in the figure. Each virtual memory address may be
mapped by the operating system to a physical memory
address. The kernel maintains, among other things, a page
table that maps a virtual memory address to a physical
memory address. For example, a virtual memory 420 having
avirtual address “2” may be used by program A. A page table
425 maintained by the kernel for program A may map virtual
address “2”to aphysical address “6” which identifies a physi-
cal memory region 430.

Similarly, a virtual memory 435 having a virtual address
“3” may be used by program B. A page table 440 maintained
by the kernel for program B may map virtual address “3” to a
physical address “7” which identifies a physical memory
region 445. As shown in the example of FIG. 4, memory
regions 430 and 445 are contiguous. Physical memory
addresses “6” and “7,” which point to memory regions 430
and 445, respectively, are consecutive. That is, physical
memory address “6” follows physical memory address “7”
without interruption. It is noted that the memory address
values are shown using decimal notation for clarity. A person
of skill in the art, however, would recognize that typically
hexadecimal notation is used to represent memory addresses
(e.g., 00000000k, 80000000k, or FFFFFFFFh).

Generally, OS memory allocators, such as the Linux
memory allocator return, memory which may not be contigu-
ous in the physical address space. That is, there is no guaran-
tee of contiguous chunks of system RAM (random access
memory). During operating system boot up, there is no con-
trol or no provision for identifying the exact or specific
regions of system RAM to reserve.

For example, the Linux driver referred to as “bigphysarea”
is unable to allocate or reserve specific physical contiguous
blocks of memory (identified via starting and ending physical
address) from a reserved memory pool during boot time.
There is no control over the exact start and end physical
addresses of the reserved regions. Further, this reservation
scheme requires a kernel module to be implemented that can
allocate memory on behalf of user-space programs. Other
reservation schemes in Linux have the undesirable result of
preventing the kernel storage and networking stacks from
being used to transfer data directly to/from these regions
because the boot time parameters cause the memory regions
to be hidden from the kernel.

In an embodiment, a system and technique of the invention
allows the exact start and end addresses of reserved memory
regions to be specified through boot time parameters, does not
require a kernel module that allocates the reserved memory
on behalf of user-space programs, and allows the kernel stor-
age and networking stacks to be used to transfer data directly
to/from the reserved regions.

More particularly, embedded systems increasingly rely on
a thin kernel and push most of the complexity to user-space
programs. Since embedded systems typically deal with spe-
cialized hardware, the control of some of that hardware falls
to user-space programs. This has resulted in an increased

10

15

20

25

30

35

40

45

50

55

60

65

6
usage of user-mode device drivers. Some products, such as
VNXe provided by EMC Corporation of Hopkinton, Mass.
use such user-mode drivers embedded into user-space pro-
grams that provide a number of services layered on top of the
basic hardware capabilities. Typically, such programs use a
mix of operating system services and direct hardware control.

When working directly with hardware it is desirable to
have full knowledge and control of physical memory. Hard-
ware devices are not aware of virtual memory and paging
constructs used by software. Instead, they access memory
directly using their physical addresses. The memory access
may be required for several reasons, including shared
memory for work queues and data transfer. Software, on the
other hand, does not address memory using physical
addresses but instead uses virtual addresses that are mapped
to the corresponding physical addresses. For this reason, user-
mode drivers need to have the required range of physical
memory mapped into their virtual address space and be aware
of the virtual to physical address mapping. This is different
from normal user program usage of memory in a couple of
ways—a normal program does not have control over which
portion of physical memory is available to it and when, and it
does not have access to its virtual to physical mapping.

Inaddition to being accessible by user-space programs, it is
desirable that the memory thus reserved is also accessible by
the OS kernel storage and networking stacks. This allows the
user-space program to also use the kernel storage and net-
working services. Doing so requires the kernel to maintain
bookkeeping data structures for such memory—including
kernel page tables and page descriptors. In the absence of
such data structures, any 10 buffers in the reserved memory
have to be copied into unreserved memory before reading/
writing to it using the storage or networking stacks in the
kernel. In a specific embodiment, a technique of the invention
provides for reserving memory while still retaining the ability
to allow read/write access by the kernel storage and network-
ing stacks.

In a specific implementation, a system and technique pro-
vides for one or more of:

1. A new boot time parameter to specify ranges of memory
to be reserved for user-space programs by providing the start
address of each region.

2. An algorithm in the kernel to mark these ranges as
special purpose in the kernel’s copy of the E820 memory
map, which is a map provided by the system BIOS containing
the start and end addresses of valid memory regions.

3. Modification to the kernel memory initialization
sequence to allocate kernel page tables and page descriptors
and prevent allocation of the said ranges for general kernel
use.

4. A mechanism for user-space programs to retrieve the
start and end addresses of the reserved ranges.

FIG. 5 shows a schematic diagram of data structures used
in a specific implementation of a technique to reserve physi-
cal memory for user-space programs. As shown in the
example of FIG. 5, there is an E820 map 505, a reserved
memory region list 510, an active memory region list 515, and
an available memory map 520.

Ina specific implementation, E820 map 505 is a copy of the
system E820 map. More particularly, the kernel saves a copy
of the system E820 map on bootup. As discussed above, the
E820 map identifies valid memory regions. In this example,
the E820 map identifies a first memory region 525A by a
starting address Al and a size S1, a second memory region
525B by a starting address A2 and a size S2, a third memory

US 9,128,625 Bl

7

region 525C by a starting address A3 and a size S3, and a
fourth memory region 525D by a starting address A4 and a
size S4.

The E820 map, active memory region list, and available
memory map are data structures heavily used by the kernel,
including the kernel bootup code, code that sets up the page
tables and other data structures, and the kernel memory allo-
cator. In a specific implementation, the reserved memory
region data structure or list is added to keep track of memory
regions reserved for user-space programs in order to reduce
the impact to the kernel code. The reserved memory region
list can be optional and is not included in other implementa-
tions. That is, in another specific implementation, the
reserved memory region list is omitted. In this specific imple-
mentation, memory reservations for the user-space programs
are made without using the reserved memory region list.
Onmitting the reserved memory region list may be desirable in
some implementations such as to facilitate execution. In other
implementations, including the reserved memory region is
desirable because it can help to reduce the impact on the
kernel code (e.g., reduce kernel code modifications, reduce
kernel code additions, and shorten development time).

Inbrief, in a specific implementation, during boot time, the
boot time parameter is parsed. An E820 map (or copy of the
E820 map) maintained or provided by the kernel is accessed.
The E820 map includes a set of entries. Each entry identifies
a region of memory available for use by the kernel. Based on
the boot time parameter, one or more entries in the E820 map
is flagged or marked to indicate that the memory region
identified by the entry is to be reserved for the user-space
programs. The corresponding entries are also added to a
reserved memory region list. Unreserved entries in the E820
map and all entries in the reserved memory region list are
added to the active memory region list. The modified kernel
code permits memory initialization and adds each entry in the
active region list (including the marked entries) to an avail-
able memory map. The available memory map identifies
regions of memory for use by the kernel. An indication in the
available memory map is made so that an entry identifying a
memory region that would otherwise be for use by the kernel
is reserved. This prevents the memory region from being used
by the kernel. The indication may include flagging the added
entry in the available memory map or removing the added
entry from the available memory map.

Generally, the kernel maintains two different data struc-
tures to track available memory—an internal list of active
memory regions (active region list), and an available memory
map. As discussed above, at boot time, the kernel E820 sub-
system makes a copy of the system E820 memory map and
parses it, identifying available sections of memory. It adds
these to the active region list. In a specific implementation, a
technique ofthe invention provides for a code modification or
configuration to also parse the boot time parameter specifying
reserved memory ranges and flag these in the active region
list.

Subsequently, kernel memory subsystem initialization
code calls the E820 subsystem to query valid memory ranges
in order to allocate kernel page tables and page descriptors for
them. It also adds these ranges to the available memory map
that’s used later on to determine the memory ranges available
for general kernel use. In a specific implementation, there is a
step thatimmediately calls the E820 subsystem to remove any
regions from this map that should not be available for general
kernel use. At this point, the E820 subsystem removes the
reserved regions from the map, thus ensuring that those
regions can be safely used by user-space programs.

10

15

20

25

30

35

40

45

55

60

65

8

With this solution, the kernel sees the reserved memory
ranges as normal RAM with direct read/write access by the
storage and networking stacks, but simply cannot be allocated
for general use. Thus, the kernel storage and networking
stacks can be used for performing IO to reserved memory
without incurring the overhead of memory copying.

FIG. 6 shows a further example of an overall flow 605 of a
specific implementation for reserving contiguous regions or
chunks of physical memory for user-space programs. Some
specific flows are presented in this application, but it should
be understood that the process is not limited to the specific
flows and steps presented. For example, a flow may have
additional steps (not necessarily described in this applica-
tion), different steps which replace some of the steps pre-
sented, fewer steps or a subset of the steps presented, or steps
in a different order than presented, or any combination of
these. Further, the steps in other implementations may not be
exactly the same as the steps presented and may be modified
or altered as appropriate for a particular process, application
or based on the data.

In a step 610, the system parses a boot time parameter
specifying a memory region to be reserved for user-space
programs. The boot time parameter is provided to a kernel
startup or boot up process or sequence. For example, the boot
time parameter may be added in or inserted into a kernel boot
up sequence. Boot time refers to that period of time when a
computer system is starting up. During boot up, the processor
may execute code or instructions stored in read-only memory
(ROM). The code stored in ROM may be referred to as the
Basic Input/Output System (BIOS).

The boot time parameter specifies a contiguous region of
physical memory to be reserved for user-space programs
(e.g., reserved for use by one or more user-space programs).
The table below shows a specific implementation or form of
the boot time parameter.

TABLE

memmap = <start>@<size>

Thus, in a specific implementation, a method includes
parsing the kernel command line arguments of the form
“memmap="<start>@-<size>.” In this specific implementa-
tion, the boot time parameter includes a first variable or value,
and a second variable or value that may be used to define,
specify, or identify a starting and ending address of a contigu-
ous region of memory to be reserved. That is, the contiguous
region of memory may be at fixed addresses, of a fixed size, or
pre-defined, pre-determined, or “hard-coded.” In this specific
implementation, the first variable is labeled “start.”” The first
variable is followed by the second variable which is labeled
“size”” The first variable stores, holds, or contains a first value
that specifies a starting address of a contiguous region or
range of memory to be reserved. The second variable stores a
size of the contiguous region of memory to be reserved. The
size may be specified, for example, in gigabytes. In another
specific implementation, a boot time parameter may include a
starting address of the contiguous region of memory to be
reserved and an ending address of the contiguous region of
memory. A boot time parameter may include a starting
address of a contiguous region of memory and a length ofthe
contiguous region of memory to be reserved. Memory
addresses may be provided in hexadecimal notation.

In a step 615, the system marks such regions as reserved in
the saved copy of the E820 map. To continue with the
example shown in FIG. 5, the boot time parameter may
specify that a memory region having a start address A4 and a

US 9,128,625 Bl

9

size S4 is to be reserved for the user-space programs. The
parameter is parsed to identity the specified memory regionto
be reserved. After the parameter is parsed and the specified
memory region identified, an indication is made in the copy of
E820 map 505 that the specified memory region is reserved.
For example, as shown in FIG. 5, fourth memory region 525D
having the start address A4 and size S4 has been filled with a
diagonal pattern to indicate that it has been reserved.

In a step 620, the system tracks the reserved memory
region. In a specific implementation, the reserved memory
region is tracked by creating or generating a reserved memory
region list or tracking list 510 (FIG. 5). To track the specified
memory region, an indication, record, or entry 530 is made in
or added to list 510. As shown in FIG. 5, entry 530 identifies
the specific memory region to be reserved via its starting
address (e.g., A4) and size (e.g., S4). It should be appreciated
that the reserved memory region list can track any number of
entries identifying memory regions to be reserved.

In a step 625, the system adds the entry or otherwise makes
an entry identifying the specific memory region to be reserved
to the active memory region list. For example, as shown in
FIG. 5, an arrow 535 indicates entry 530 from reserved
memory region list 510 being added to active memory region
list 515. In a specific implementation, unreserved entries
from E820 map 505 are also added to active memory region
list as shown by arrows 540 and 545. In a specific implemen-
tation, the modified kernel—as shown by a step (1) (FIG.
5)—takes all unreserved entries from E820 map 505, as well
as all entries from the reserved memory region list 510 and
adds them to active memory region list 515.

Thus, as shown in the example of FIG. 5, the active
memory region list includes an entry identifying a memory
region with a start address A4 and size S4 (i.e., entry 530 from
reserved memory region list 510), an entry identifying a
memory region with a start address Al and size S1, and an
entry identifying a memory region with a start address A3 and
size S3 from E820 map 505. Although FIG. 5 shows three
entries, one of which identifies a memory region to be
reserved, it should be appreciated that FIG. 5 is merely an
example. There can be any number of reserved entries and any
number of unreserved entries.

In a step 630, the active region list (having the reserved and
unreserved entries) is then used to initialize kernel data struc-
tures such as page tables and page descriptors. In other words,
the kernel is permitted to initialize memory.

In a step 635, the system adds the entry identifying the
specific memory region to be reserved to the available
memory map. Unreserved entries are also added to the avail-
able memory map. In other words, in a specific implementa-
tion, after the initialization—as shown by a step (2) and an
arrow 550 (FIG. 5)—the modified kernel takes all entries
from the active memory region list and adds them to the
available memory map. The available memory map is used by
the kernel memory allocator to decide which portions of
memory can be allocated for general system use.

In a step 640, the system scans, examines, or consults
reserved memory region list 510 to find one or more reserved
memory regions tracked by the reserved memory region list.
In this example, upon scanning the reserved memory region
list, the system encounters entry 530 which identifies the
reserved memory region having the start address A4 and size
S4.

In a step 645, based on the scan, the system updates the
available memory map of the kernel—as shown by a step (3)
(FIG.5)—to indicate that aregion of memory identified in the
available memory map (and corresponding to the entry
tracked in the reserved memory region list) is used. This

25

30

35

40

45

55

10

reserves the region of memory for the use by the user-space
programs. For example, as shown in FIG. 5, the available
memory map includes an identification of a memory region
having a start address A4 and a size S4. A diagonal pattern has
been applied to the region to indicate that it is used or is
otherwise reserved. In other words, in a specific implemen-
tation, before continuing with the kernel bootup, the system
scans the reserved memory region list and marks the corre-
sponding regions in the available memory map as used. This
makes those regions unavailable for general system use.

FIG. 7 shows another example of a flow of a specific
implementation for physical memory reservation for user-
space programs. FIG. 8 shows a continuation of the flow
shown in FIG. 7. Referring now to FIG. 7, in a step 710, the
kernel begins booting up. In a step 715, a kernel command
line argument having the form “memmap="<start>@size” is
parsed—i.e., the physical memory reservation boot time
parameter as discussed above. “Start” refers to the starting
physical address of memory to be reserved. “Size” refers to
the amount of the physical memory to be reserved. In a step
720, the region is marked as reserved in the E820 map and is
also added to a separate reserved memory region list so that
the region can be tracked.

In a step 725, a determination is made of whether there are
more kernel command line arguments. If there are more ker-
nel command line arguments, the system loops 735 back to
step 715 to parse any other command line arguments having
the physical memory reservation boot time parameter. I[f there
are no more kernel command line arguments, in a step 730 the
system takes unreserved entries from the system E820 map as
well as all entries from the reserved memory region list and
adds them to the active memory region list. In a step 740,
memory is initialized. For example, the kernel may be per-
mitted to setup page tables and descriptors for all memory
described by the entries in the active memory region list.

Referring now to FIG. 8, in a step 805 each entry in the
active memory region list is added to the kernel memory
allocator. In a step 810, the system consults the reserved
memory region list and selects an entry from the reserved
memory region list. In a step 815, the system marks the
memory region corresponding to the selected entry from the
reserved memory region list as reserved in the available
memory map used by the kernel memory allocator.

In a step 820, the system determines whether there are
more, additional, or other entries in the reserved memory
region list. If there are other entries, the system loops 825
back to step 810 to select a next or remaining entry from the
reserved memory region list. If there are no other entries, the
system permits the kernel to continue with the boot up (step
830).

In a specific embodiment, systems and techniques for
physical memory reservation for user-space programs are
implemented in the Linux operating system. Principles and
aspects of the invention, however, can be applicable to other
operating systems. Some examples of other operating sys-
tems include Mac OS X provided by Apple, Inc., Microsoft
Windows provided by Microsoft Corporation, Google
Chrome OS provided by Google, and others.

Inthe description above and throughout, numerous specific
details are set forth in order to provide a thorough understand-
ing of an embodiment of this disclosure. It will be evident,
however, to one of ordinary skill in the art, that an embodi-
ment may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form to facilitate explanation. The description
of the preferred embodiments is not intended to limit the
scope of the claims appended hereto. Further, in the methods

US 9,128,625 Bl

11

disclosed herein, various steps are disclosed illustrating some
of the functions of an embodiment. These steps are merely
examples, and are not meant to be limiting in any way. Other
steps and functions may be contemplated without departing
from this disclosure or the scope of an embodiment.

What is claimed is:

1. A method for reserving memory of a computer system
comprising:

parsing a boot parameter that specifies a memory region to

be reserved for user-space programs;

marking an entry in an E820 map of an operating system

kernel to indicate thata memory region corresponding to
the specified memory region and identified by the entry
is reserved,

adding the entry identifying the specified memory region

to an active memory region list and tracking the speci-
fied memory region in a reserved memory region track-
ing list;

permitting the kernel to initialize memory using the active

memory region list having the added entry;

after the memory initialization, adding the entry to an

available memory map;

scanning the reserved memory region tracking list to iden-

tify the specified memory region that is to be reserved;
and

based on the scan, updating the available memory map to

indicate that a region of memory identified by the added
entry is used, thereby reserving the region of memory for
the user-space programs, the region of memory being
the memory region specified by the boot parameter.

2. The method of claim 1 wherein the entry is a first entry
and the method comprises:

adding a second entry from the E820 map to the active

memory region list, wherein the second entry identifies
a region of memory that is not reserved for the user-
space programs,

the active memory region list thereby comprising the sec-

ond entry, and the first entry, wherein the first entry
identifies the specified memory region reserved for the
user-space programs, and the second entry identifies the
region of memory that is not reserved for the user-space
programs.

3. The method of claim 2 comprising:

adding the second entry from the active memory region list

to the available memory map, the available memory map
thereby comprising the second entry, and the first entry,
wherein the first entry identifies the specified memory
region reserved for the user-space programs, and the
second entry identifies the region of memory that is not
reserved for the user-space programs.

4. The method of claim 1 wherein the boot parameter
comprises a first value, and a second value to identify a
physical starting address and a physical ending address of the
memory region to be reserved.

5. The method of claim 1 wherein the boot parameter
comprises a physical starting address, and a size of the
memory region to be reserved.

6. The method of claim 1 wherein a form of the boot
parameter is “memmap="<start>@<size>,” and wherein the
“start” variable stores a physical starting address of the
memory region to be reserved, and the “size” variable stores
a size of the memory region to be reserved.

7. The method of claim 1 wherein after the updating the
available memory map, kernel storage and networking stacks
are capable of accessing the contiguous memory region,
thereby allowing the user-space programs to use services
provided by the kernel storage and networking stacks.

10

15

20

25

30

35

40

45

50

55

60

65

12

8. The method of claim 1 wherein the E820 map comprises
a copy of an E820 map provided by a BIOS of the computer
system.

9. The method of claim 1 wherein the operating system
kernel comprises Linux.

10. A computer program product, comprising a non-tran-
sitory computer-readable medium having a computer-read-
able program code embodied therein, the computer-readable
program code adapted to be executed by one or more proces-
sors to implement a method comprising:

parsing a boot parameter that specifies a memory region to

be reserved for user-space programs;

marking an entry in an E820 map of an operating system

kernel to indicate that a memory region corresponding to
the specified memory region and identified by the entry
is reserved,

adding the entry identifying the specified memory region

to an active memory region list and tracking the speci-
fied memory region in a reserved memory region track-
ing list;

permitting the kernel to initialize memory using the active

memory region list having the added entry;

after the memory initialization, adding the entry to an

available memory map;

scanning the reserved memory region tracking list to iden-

tify the specified memory region that is to be reserved;
and

based on the scan, updating the available memory map to

indicate that a region of memory identified by the added
entry is used, thereby reserving the region of memory for
the user-space programs, the region of memory being
the memory region specified by the boot parameter.

11. The computer program product of claim 10 wherein the
entry is a first entry and the method comprises:

adding a second entry from the E820 map to the active

memory region list, wherein the second entry identifies
a region of memory that is not reserved for the user-
space programs,

the active memory region list thereby comprising the sec-

ond entry, and the first entry, wherein the first entry
identifies the specified memory region reserved for the
user-space programs, and the second entry identifies the
region of memory that is not reserved for the user-space
programs.

12. The computer program product of claim 11 wherein the
method comprises:

adding the second entry from the active memory region list

to the available memory map, the available memory map
thereby comprising the second entry, and the first entry,
wherein the first entry identifies the specified memory
region reserved for the user-space programs, and the
second entry identifies the region of memory that is not
reserved for the user-space programs.

13. The computer program product of claim 10 wherein the
boot parameter comprises a physical starting address, and a
size of the memory region to be reserved.

14. The computer program product of claim 10 wherein
after the updating the available memory map, kernel storage
and networking stacks are capable of accessing the contigu-
ous memory region, thereby allowing the user-space pro-
grams to use services provided by the kernel storage and
networking stacks.

15. The computer program product of claim 10 wherein the
E820 map comprises a copy of an E820 map provided by a
BIOS of the computer system.

16. A system for memory management, the system com-
prising:

US 9,128,625 Bl

13

a processor-based memory management system executed
on a computer system and configured to:

parse a boot parameter that specifies a memory region to be
reserved for user-space programs;

mark an entry in an E820 map of an operating system
kernel to indicate thata memory region corresponding to
the specified memory region and identified by the entry
is reserved,

add the entry identifying the specified memory region to an
active memory region list and tracking the specified
memory region in a reserved memory region tracking
list;

permit the kernel to initialize memory using the active
memory region list having the added entry;

after the memory initialization, add the entry to an avail-
able memory map;

scan the reserved memory region tracking list to identify
the specified memory region that is to be reserved; and

based on the scan, update the available memory map to
indicate that a region of memory identified by the added
entry is used, thereby reserving the region of memory for
the user-space programs, the region of memory being
the memory region specified by the boot parameter.

5

10

15

20

17. The system of claim 16 wherein the entry is a firstentry 25

and the processor-based memory management system is con-
figured to:

14

add a second entry from the E820 map to the active
memory region list, wherein the second entry identifies
a region of memory that is not reserved for the user-
space programs,

the active memory region list thereby comprising the sec-

ond entry, and the first entry, wherein the first entry
identifies the specified memory region reserved for the
user-space programs, and the second entry identifies the
region of memory that is not reserved for the user-space
programs.

18. The system of claim 17 wherein the entry is a first entry
and the processor-based memory management system is con-
figured to:

add the second entry from the active memory region list to

the available memory map, the available memory map
thereby comprising the second entry, and the first entry,
wherein the first entry identifies the specified memory
region reserved for the user-space programs, and the
second entry identifies the region of memory that is not
reserved for the user-space programs.

19. The system of claim 16 wherein the boot parameter
comprises a first value, and a second value to identify a
physical starting address and a physical ending address of the
memory region to be reserved.

20. The system of claim 16 wherein the operating system
kernel comprises Linux.

#* #* #* #* #*

